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Abstract

With vast quantities of carbon being removed from the atmosphere there is an urgency to develop

safe and effective strategies for its long-term storage. There are many methods of storing carbon

but the most common and perhaps the most viable is geological carbon storage. This is where

captured carbon is liquefied and injected deep underground. While this method is effective, it

has the potential to cause serious adverse affects due to large increases in pressure. In this paper

reinforcement learning is used to optimize geological carbon storage by finding a strategy that stores

a sufficient amount of carbon while also keeping pressure levels low. To model the complex fluid

dynamics underground a simulator called OPM Flow is utilized [5]. It is shown that reinforcement

learning has the ability to find a strategy for storing carbon underground that outperforms a naive

schedule and effectively manages pressure buildup.
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Chapter 1

Introduction

In 2022, humans produced a total of 40.5 billion (short) tons of carbon dioxide (CO2), an increase

of about 0.9% from 2021 [1]. The Canadian government has committed to cut net greenhouse gas

emissions to 40 − 45% of 2005 levels before 2030 [14]. In order to meet this target, Canada will

need to significantly reduce its net CO2 emissions. Although large-scale reductions in industrial

operations and consumption can help, some CO2 emissions are necessary before a shift to a zero

carbon economy is made. Capturing and then storing CO2 may be the only way to reach this target.

There are various methods of storing CO2 but perhaps the most scalable is geological carbon

storage. Geological carbon storage is a method which involves firstly liquefying the captured CO2

emissions and then injecting them deep underground into existing geological structures. Geological

storage has various benefits over other carbon storage methods. In particular, it can make use

of depleted oil and gas reservoirs and their existing equipment. It is estimated that the United

States alone has the capacity to safely store about 3000 billion tons of CO2 in existing geological

formations [7], an enormous capacity when compared to annual global emissions. Further, the large

amounts of CO2 stored in this way typically has a comparatively small chance of leakage to the

atmosphere in the long-term [3]. The Quest carbon storage project in Alberta, the largest geological

carbon storage operation in Canada, stored just over 1.1 million tons of CO2 in 2021 bringing its

total to 7.4 million tons stored [10].

In the following report only operations that store CO2 in deep saltwater (brine) aquifers will be

considered. Such aquifers are estimated to have significantly more capacity globally than oil and

gas reservoirs comparatively [2]. During storage it is important to monitor geophysical properties,

in particular pressure levels. High levels of pressure can result in the fracturing of surrounding rock

which may lead to liquid carbon or brine escaping into surrounding water tables. Such leakage

can render fresh water in these systems non-potable. Another major concern associated with high

pressure levels is induced seismicity. Induced seismic events from injection would likely not be

directly dangerous to local populations, however, they could result in significant costs to surrounding

infrastructure and housing [12].
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CHAPTER 1. INTRODUCTION 2

Figure 1.1: A Typical Geological Carbon Storage Operation

Storage operations generate revenue by injecting CO2 and receiving carbon offset credits from

the government. In addition to injection, the existing brine can be extracted. This is done in order

to reduce pressure levels in the aquifers. Extracting and safely disposing this brine comes at a

cost. Thus, rates of injection and extraction over time are controllable factors that can be used

to optimize such operations. However, pressure dynamics in these environments are governed by

complex multi-phase fluid flow differential equations, making optimal operation schedules difficult

to solve analytically. Artificial Intelligence, in particular Reinforcement Learning, is used to learn

these complex pressure dynamics and cost functions to optimize this process.



Chapter 2

Reinforcement Learning

Reinforcement Learning (RL) is a type of machine learning that aims to train a decision making

agent to perform a task in a way that maximizes the chance of achieving some goal [13]. It does this

by repeatedly attempting the task, taking actions, and learning from them. The agent will repeat

actions it thinks are good whilst also randomly exploring other possibilities to find an optimal

sequence of actions to take. This trade off between exploiting known actions and gaining knowledge

on new actions is a key component of RL.

The way a RL agent learns is through repeated interactions with its environment (see figure 2.1).

At time t, the agent observes the current state st and based off of this chooses some action at. The

state then evolves into some new state st+1 and the agent receives feedback in the form of a reward

rt+1. RL tasks are often episodic meaning that the agent tries to optimize the task over some finite

time horizon T called an episode. The sets of possible states, actions, and rewards are denoted by

S, A, and R respectively. Although RL environments can be incredibly complex, they are typically

assumed to be Markov Decision Processes (MDPs). The way the environment evolves at time t can

be characterized by the memoryless transition probabilities:

p(s′, r|s, a) = P{St+1 = s′, Rt+1 = r|St = s,At = a}

where s, s′ ∈ S, a ∈ A, and r ∈ R.

rt+1

. . . st st+1 . . .

at

rt+1

. . . st st+1 . . .

at

rt+1

. . . st st+1 . . .

at

rt+1

. . . st st+1 . . .

at

Figure 2.1: Evolution of the agent-environment interaction

An agent takes actions based on a function called a policy π : S → P(A). A policy is a mapping
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CHAPTER 2. REINFORCEMENT LEARNING 4

from states to distributions over actions where

π(a|s) = P(At = a|St = s)

is the probability of choosing action a in state s. Note that degenerate distributions are possible in

this framework allowing for agents to have deterministic policies.

The reward acts as a feedback signal for the agent that tells it how good or bad an action was.

To formalize the RL problem, the agent wants to find a policy that maximizes its expected sum of

discounted rewards:

Eπ

[
T∑

t=0

γtRt+1

∣∣∣∣∣S0 = s0

]
(2.1)

where γ ∈ [0, 1] is a discount factor. If γ = 0 the agent only cares about maximizing the immediate

reward and if γ = 1 it wants to maximize the total reward it receives. The above expectation

depends on the policy π since actions affect rewards directly and indirectly through state-evolution

(see figure 2.1). In order to assess a policy, it is important to know the value of following it from a

specific state. This is formalized by the state-value function:

Vπ(s) = Eπ

[
T−t∑
k=0

γkRt+k+1

∣∣∣∣∣St = s

]
(2.2)

for s ∈ S. This function gives the value of the state s at time t following the current policy π.

Evaluating the quality of actions is also important. This is quantified by the action-value function

Qπ(s, a) = Eπ

[
T−t∑
k=0

γkRt+k+1

∣∣∣∣∣St = s,At = a

]
(2.3)

for s ∈ S and a ∈ A. This is the value of taking action a in state s at time t and then following the

policy π thereafter.

Letting Gt =
∑T−t

k=0 γ
kRt+k+1 one can rewrite the state-value function as

Vπ(s) = Eπ[Gt|St = s]

= Eπ [Rt+1 + γGt+1|St = s]

= Eπ [Rt+1 + γVπ(St+1)|St = s]

This equation is called the Bellman equation. It says that the value of a state s is the expected

reward received in the state and the discounted value of the next state both under π. Similarly, one

can derive the action-value Bellman equation:

Qπ(s, a) = Eπ [Rt+1 + γGt+1|St = s,At = a]

= Eπ [Rt+1 + γQπ(St+1, At+1)|St = s,At = a]

As mentioned, the goal of an agent is to find the policy that maximizes equation (2.1). A slightly

stronger condition for a policy is to maximize expected future reward from any state. Such a policy,

denoted by π∗, is called optimal and satisfies the equation
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π∗ = argmax
π

Vπ(s) for all s ∈ S (2.4)

The notation is often changed for the optimal policy where Vπ∗ = V ∗ and Qπ∗ = Q∗. The optimal

policy chooses the best action in each state and so the optimal policy’s state-action value function

satisfies

Q∗(s, a) = Eπ∗ [Rt+1 + γGt+1|St = a,At = a]

= Eπ∗ [Rt+1 + γV ∗(St+1)|St = a,At = a]

= Eπ∗

[
Rt+1 + γmax

a′
Q∗(St+1, a

′)
∣∣∣St = a,At = a

]
Where the last equation follows from the fact that V ∗(St+1) = Q∗(St+1, π

∗(St+1)) = maxa′ Q(St+1, a
′)

since π∗ is optimal. This is referred to as the Bellman optimality equation. It says that un-

der the optimal policy, the action-value function for state s and action a is equal to the expected

reward plus the discounted action-value function in the next state when the best action is taken

and the optimal policy is followed thereafter. The Bellman optimality equation is used in many RL

algorithms.



Chapter 3

Deep Deterministic Policy

Gradient (DDPG)

3.1 Background

In geological carbon storage, the possible actions (injection and extraction rates) form a bounded

interval. The RL method chosen to optimize this process is Deep Deterministic Policy Gradient

(DDPG), an actor-critic method made for continuous action spaces [4]. In training, a policy (actor)

chooses actions and receives rewards. Its estimated action-value function (critic) is updated and

then used to assess the quality of the actions chosen. The actor is subsequently updated, ensuring

the policy approaches the optimal.

Before an in-depth explanation of these updates is made, a weaker case is considered. Assume

that for a task the optimal policy is unknown but its action-value function Q∗(s, a) is known and

differentiable with respect to actions. Since the optimal policy maximizes its action-value function

in each state s, it can be calculated from the equation π∗(s) = argmax
a

Q∗(s, a). However, due to

the complexity of Q∗ this maximum can often be computationally infeasible to find for each state

encountered. Another approach is to use an artificial neural network (NN) and gradient ascent on

its parameters to approximate π∗ instead.

Firstly, a neural network for a policy (figure 3.1) is initialized and denoted by µ(·|θ) : S → A
where θ are its parameters. Secondly, initial learning and exploration rates α > 0 and σ > 0 are

chosen. Lastly, the agent repeats the task many times, encountering states s and taking actions

µ(s|θ)+ ϵ where ϵ ∼ N (⃗0, σ2I) is some noise that allows the agent to explore S. After each attempt,

∇θQ
∗(s, µ(s|θ))

is calculated using the chain rule (Q∗ is assumed differentiable with respect to its action argument)

and the parameters are updated according to

θ ← θ + α∇θQ
∗(s, µ(s|θ))

With a careful scheduling of α and σ, µ(·|θ) will approach π∗. In general, Q∗ is unknown making

6



CHAPTER 3. DEEP DETERMINISTIC POLICY GRADIENT (DDPG) 7

the above process of approximating π∗ impossible. DDPG fixes this issue by approximating Q∗ with

another NN, using it in the gradient computation above, and learning its parameters alongside the

policy’s.

3.2 Update Rules

The two NNs that define a policy and its action-value function are denoted by µ(·|θµ) and

Q(·, ·|θQ) respectively (see figure 3.2). The DDPG algorithm ensures convergence of µ to the optimal

policy through repeated parameter updates of Q and µ. To help with stability in these updates,

two copies of the above (targets) are created Q′(·, ·|θQ′
) and µ′(·|θµ′

) where initially θQ
′
= θQ and

θµ
′
= θµ. A soft-update hyperparameter τ ∈ (0, 1] and learning rates β, α > 0 are further initialized.

The task will be repeatedly attempted by µ(·|θµ) and the experience tuples (s, a, r, s′, d) are

saved and learnt from. s′ and d represent the new state and an indicator for whether the new state

is terminal respectively.

3.2.1 Critic Update Rule

As mentioned in the introduction to RL, the optimal action-value function satisfies Bellman

optimality:

Q∗(s, a) = E[Rt+1 + γmax
a′

Q∗(St+1, a
′)|St = s,At = a] ∀s ∈ S and a ∈ A

This turns out to be a sufficient condition for optimality. Replacing Q∗ with Q it can be used as a

loss function that when minimized will ensure Q ≈ Q∗. Finding the equation requires computing

max
a′

Q∗(St+1, a
′) = Q∗(St+1, π

∗(St+1))

This is computationally infeasible to find for each state, however, since µ ≈ π∗:

max
a′

Q(St+1, a
′|θQ) ≈ Q(St+1, µ(St+1|θµ)|θQ)

Using the target networks for stability in updates, the loss to minimize based off the experience

tuple (s, a, r, s′, d) is

LQ(θ
Q) =

(
Q(s, a|θQ)− r − γ(1− d)Q′(s′, µ′(s|θµ

′
)|θQ

′
)
)2

(3.1)

The (1− d) is derived from the fact that the will be no future rewards if the next state is terminal.

The gradient of LQ is computed and the update

θQ ← θQ − β∇θQLQ(θ
Q)

is performed. The target network Q′(·, ·|θQ′
) is then soft-updated according to

θQ
′
← (1− τ)θQ

′
+ τθQ

With proper scheduling of update hyper-parameters, these updates ensure that LQ → 0⇒ Q→ Q∗
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...
...

. . .

...

. . .

. . .

at

...

st

Figure 3.1: Actor NN Architecture

...
...

. . .

...

. . .

. . .

Q(st, at)

...

at

st

Figure 3.2: Critic NN Architecture

3.2.2 Actor Update Rule

If the policy is optimal, the agent will choose the action that maximizes its action-value function

in every state. Therefore, in order for µ→ π∗ µ(·|θµ) the parameters θµ must be chosen to maximize

Q(s, µ(s|θµ)|θQ) (3.2)

Using gradient ascent to ensure this results in the same parameter update mentioned above for the

experience tuple (s, a, r, s′, d):

θ ← θ + α∇θµQ(s, µ(s|θµ)|θQ)

Since Q→ Q∗, this update will make µ approach π∗. The target actor network is then soft-updated

accordingly

θµ
′
← (1− τ)θµ

′
+ τθµ

The critic (Q) guides the actor (µ) to make more optimal actions based on how it currently

values the action taken by the actor. The actor and critic are used to update each other pushing

themselves towards the optimal given enough exploration and iterations.

3.3 Algorithm

The DDPG algorithm begins by simulating an episode where actions are taken according to

the randomly initialized actor network µ(·|θµ). At each decision making time point, the agent

stores the transitions (s, a, r, s′, d) in a replay buffer D. Once enough episodes are simulated and

D is sufficiently large, N transitions {(siti , a
i
ti , r

i
ti , s

i
ti+1, d

i
ti)}i≤N are sampled from D and means

for equations 3.2 and 3.1 are calculated at which point gradient ascent and descent are respectively

used to update the parameters of the actor and the critic. The purpose of the replay buffer D

is to allow for transitions to be learned from multiple times in order to speed up convergence.

This is especially useful when simulation of episodes is computationally expensive. This process is

repeated, sampling from D and updating the parameters after each episode, until convergence is

achieved. Once converged µ ≈ π∗.



Algorithm 1: Deep Deterministic Policy Gradient (Episodic) [4]

Initialize network parameters θQ and θµ and an empty replay buffer D. Initialize target
networks setting θQ

′
= θQ and θµ

′
= θµ. Set action exploration value σ > 0, soft-update

value 0 < τ < 1, and sample mini-batch size N
for i in iterations do

Reset environment with initial state s0
while True do

Take action at = µ(st|θµ) + ϵ where ϵ ∼ N (⃗0, σ2I). Observe new state st+1, reward
rt, and terminal state signal dt. Store (st, at, rt, st+1, dt) in D
if |D| > N then

Randomly sample a mini-batch of N transitions {(siti , a
i
ti , r

i
ti , s

i
ti+1, d

i
ti)}i≤N from

D
Calculate

yi = riti + γ(1− diti)Q
′(siti , µ

′(siti+1|θµ
′
)|θQ

′
)

Update critic with gradient descent using

∇θQ

1

N

N∑
i=1

(Q(siti , a
i
ti |θ

Q)− yi)
2

Update actor with gradient ascent using

∇θµ

1

N

N∑
i=1

Q(siti , µ(s
i
ti |θ

µ))

Soft-update target networks

θQ
′
← τθQ + (1− τ)θQ

′

θµ
′
← τθµ + (1− τ)θµ

′

break if dt

Take actions according to π(s) = µ(s|θµ)

9



Chapter 4

Environment

4.1 OPM Flow

In order to optimize geological carbon storage it is necessary to know how pressure and saturation

in underground saline aquifers evolves when carbon is injected or brine is extracted. OPM flow is a

black oil simulator used to simulate fluid flow in porous rock (figure 4.1). The simulator has three

components: water, gas, and oil each of which can take one of three phases: aqueous, oleic, or

gaseous. OPM tracks phase changes and movements of these fluids. Furthermore, it is able to track

solutions and precipitates that form from interactions between the fluids. The system is governed

by the conservation of mass equations for the three components given by

∂

∂t
(ϕrefAα) +∇uα + qα = 0

where α is either oil (o), gas (g), or water (w). Aα, uα, and qα are the accumulation term, flux,

and well out flux density respectively for component α. ϕref is a constant reference porosity for the

reservoir. The fluid flow dynamics are also subject to Darcy’s law and certain initial and boundary

conditions.

Figure 4.1: OPM simulating a non-rectangular reservoir

With OPM Flow, the reservoir is broken up into discrete cells. The equations governing fluid

10



CHAPTER 4. ENVIRONMENT 11

flow are discretized and solved implicitly. For the purposes of geological carbon storage, the main

quantities of interest are carbon saturation and pressure. Using the discretized equations it is possible

to obtain the carbon saturation and pressure for every cell in the reservoir as time evolves.

In order to model how fluids are injected or extracted into the reservoir iteslf, OPM uses a

standard well model which describes the fluid composition inside the well. The total flow rate,

fraction of water, and fraction of gas respectively are

Qt =
∑

α∈{o,g,w}

gαQα, Fw =
gwQw

Qt
, Fg =

ggQg

Qt

where Qα is the flow rate and gα is some weighting factor for component α.

4.2 CO2STORE Package

OPM Flow has the ability to model fluid dynamics for geological carbon storage in brine aquifers

using the CO2STORE package. In this package the gas component is replaced by CO2 and the

oil component is replaced with brine. There is no water component. The reservoir is initially full

of brine and CO2 is injected which can stay separate from the brine or dissolve. Brine can also

be extracted by wells in order to relieve pressure. When this package is active, properties such as

density, viscosity, and enthalpy are computed internally as functions of pressure, temperature, and

fluid composition using models from the relevant literature. Thermal properties of the fluids such

as enthalpy not only depend on pressure, temperature, and dissolved CO2, but also on the salinity

of the brine which can be specified based on the region.

4.3 Reservoir Setup

A square reservoir (figure 6.1) is used to simulate storage. The reservoir is 7,500 feet underground,

18,000 feet across, and 50 feet vertically. In OPM this is discretized to a single-layered 60× 60 grid.

Although simulating a square reservoir may be restrictive, the porosity and permeability values of

the rocks simulated are realistic. The pressure levels in the reservoir are initially in equilibrium and

constant at 3500 PSI. In such reservoirs the chances of induced seismic events become increasingly

more likely when the maximum pressure in the reservoir rises 1000 PSI above its initial level. Often

times operations completely stop if this occurs. This will be reflected in the rewards described

below. The interaction between the OPM simulator in the environment and the DDPG algorithm

updates are demonstrated in figure 4.3. Every time step the agent observes the current state (or

some restriction of the state), it chooses an amount to inject and extract until the next time period.

OPM then evolves the reservoir based off of this, and some reward is received. After this, parameters

are updated. In the following setups, the operation runs for a total of 24 years. Every two years the

agent chooses an action based off of its current observation of the state.



Figure 4.2: The reservoir used with injection and extraction sites

. . .

µ(st|θµ) = at

OPM

rt+1

(st, at, rt+1, st+1)

θµ ← θµ + α∇θµQ(s, µ(s|θµ)|θQ)
θQ ← θQ − β∇θQLQ(θ

Q)

st st+1

Figure 4.3: The DDPG OPM interaction
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Chapter 5

Framework I: Full Observability

5.1 States and Rewards

Under the full observability framework, it is assumed that at every decision making time step

the agent observes the pressure and carbon saturation at every cell in the reservoir. This results in

the state

st = (Pt,St)

where Pt and St are 60× 60 arrays of pressure and carbon saturation values respectively. Because

of the strong spacial correlations in the pressure and saturation grids, convolutional neural networks

are used for both the actor and critic to efficiently process the states. Once the state is observed,

the actor network will output a target injection rate for the agent to take for the next 2 year period

at = νt

The maximum target rate that the agent can choose is 3.9 short tons per day. Since the rate chosen

by the agent is a target, the actual amount of carbon injected in the period ct may slightly differ

from νt∆t but the difference is negligible. The agent chooses a new action every 2 years for a 24

year period.

As mentioned, in order to avoid significant chances of induced seismicity, it is best practice to

shut down operations if the maximum pressure at any point in the reservoir rises 1000 PSI above

the initial reservoir pressure. Further, there are often precautionary measures placed on lower non-

terminal pressures. This is reflected in a stoplight type system for injection where green means it is

safe to continue injecting, yellow indicates caution should be used, and red indicates the operations

should stop. This is incorporated into the reward function for the agent with a sigmoid (5.2) which

takes in the maximum pressure in the grid and outputs a penalty based on how much higher it is

than the initial equilibrium pressure I. A sigmoid is used in order to smooth the rewards received

by the agent to aid in learning. In addition to this soft penalty for pressures in the yellow zone, a

harsh penalty is experienced when the maximum observed pressure rises above 1,000 PSI from its

initial pressure. In this case the operation shuts down completely and no more rewards are received.

13



CHAPTER 5. FRAMEWORK I: FULL OBSERVABILITY 14

Figure 5.1: Full observability framework reservoir

I P E

0.5

1

max{P⃗t+1}

P
en
al
ty

(C
)

Figure 5.2: Penalty incurred for values of maximum pressure. Terminal pressure E is 1000 psi higher
than I

Since the agent receives offset credits based on the amount of CO2 injected, the goal is to inject

as much CO2 as possible while also not incurring any penalty associated with the pressure rising. If

the maximum pressure is in the yellow zone, the agent will lose the full value of the injected carbon

for the last injection period. This results in the following reward function:

rt = βννt(1−C(max P⃗t))

where C is the cost penalty from figure 5.2 and βν is the current financial benefit of injection.

5.2 Results

Due to the large state space in this framework, a substantial amount of computational power is

needed to train this algorithm. As a result convergence was not acheived under this framework.



Chapter 6

Framework II: Partial

Observability

6.1 States and Rewards

The second framework considered is one in which the relevant state factors are only partially

observed. In geological storage operations, the pressure and saturation values in the entire reservoir

are impossible to observe. However, injection and extraction wells often have the ability to detect

pressure values. Further, observational specific wells can be placed in strategic locations to gain

more information on how the reservoir is evolving. In order to emulate this restriction, another state

observation setup is used. In particular, the agent is now restricted to only observing pressure values

in 7 locations in the reservoir (including injection and extraction wells). This setup is depicted in

figure 6.1. There are four observation wells, two extraction wells, and one injection well. The agent

will be able to observe the pressure values in these seven locations and must make inferences on how

pressure is evolving elsewhere in the grid.

Figure 6.1: Partial observability framework reservoir

In addition to these pressure values, the agent knows how far into the 24 year 12 time-step episode

15



CHAPTER 6. FRAMEWORK II: PARTIAL OBSERVABILITY 16

they are. Thus, for the agent, the observed state of the reservoir at time t is

st = (t, P1,t, ..., P7,t) (6.1)

In an extension to framework I, the agent now has control over extraction. Thus, every two years

the agent must decide how much carbon to inject into the reservoir and how much brine to extract.

So, the agent observes the state st and takes an action

at = (νt, bt) (6.2)

Where νt and bt represent injection and extraction rates respectively. Both extraction wells produce

brine at the same rate chosen by the agent. νt and bt can range to up to 0.4 and 1800 short tons

respectively per day over the two year period.

Again, to be in accordance with the stoplight system, a max pressure close to 1, 000 psi above

the initial value should result in no benefit for the agent from injection and a max pressure change

above 1, 000 should end operations. Since brine extraction costs the firm, the reward function is

defined to be

rt = βννt(1−C(max P⃗t))− βbbt

where C is the cost penalty for pressure shown in figure 5.2. βν and βb are constants that reflect

the current financial benefit and cost to injection and extraction respectively. The reward constants

chosen for this specification are βν = 2.7839 and βb = 1.1403. They reflect the current carbon offset

price [10] and cost of brine production [8].

6.2 Results

The performance of the agent is compared with that of an optimal constant schedule found by

trying all combinations of rates νt, bt ∈ {0, 0.1, 0.2, ..., 0.9, 1} for every t ≤ T . The optimal constant

sequence and its respective cumulative normalized rewards are shown in figure 6.2. The optimal

constant rates were found to be νt = 0.5 and bt = 1. This schedule allowed for the maximum

pressure to remain below that of the high-pressure region. In the end, the optimal constant schedule

received a total cumulative normalized reward of 11.2065.
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Figure 6.2: Optimal constant schedule with
∑T

t=0 rt = 11.2065

After running the DDPG algorithm for 1000 iterations, the resultant schedule chosen was

Figure 6.3: DDPG schedule after 1000 iterations with
∑T

t=0 rt = 12.3403

Similarly to how the optimal constant schedule deals with pressure, the agent decides to maximize

extraction throughout the episode. The optimal constant schedule has injection at 0.5 for the entire
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episode whilst the DDPG schedule deals with pressure build-up by fluctuating around a rate of 0.5

in the first half and then remaining relatively constant for the remainder of years. This schedule

is able to maximize reward from injection by keeping the maximum pressure just below the high

pressure level the entire time. This is in contrast to the constant schedule in which pressure is

kept just below the high pressure threshold near the end of the episode. In the end, the DDPG

agent after 1000 iterations is able to more efficiently control pressure levels in the reservoir and thus

receives a higher total cumulative reward. The same model is trained for another 1000 iterations

with a smaller exploration rate. The agent again decides to implement the maximum The resulting

schedule increases cumulative rewards to 12.3723.

Figure 6.4: DDPG schedule after 1000 iterations with
∑T

t=0 rt = 12.3723

This new schedule keeps a similar behaviour to the one above at the beginning of the episode in

that it decides to decrease injection until year 6 and then increase thereafter (with a smaller initial

injection rate). This allows the agent to remove pressure from the system and increase rates later

on.



Chapter 7

Discussion and Conclusion

Artificial Intelligence has become a powerful tool to optimize operations in many industries. The

above results show that carbon storage can also benefit from AI integration. The ability of the

neural networks to learn these complicated pressure dynamics results in non-instinctive schedules of

injection rates. This exemplifies the power of neural networks and the algorithms that apply them.

In the first, full observability specification, the state space and the convolutional neural networks

used to observe it came at a high computational cost to train. This large parameter space combined

with the low speed of OPM flow resulted in a lack of convergence for the DDPG model. With more

computational time, convergence to an optimal would be likely. In the second, partial observability,

specification the final schedule chosen by the agent uses a non-intuitive method to deal with pressure

build-up. A fluctuation around the midpoint of injection rates allows for the model to gain rewards

from high levels of CO2 injection whilst keeping the pressure in the reservoir under control.

The above specifications imply that in a reservoir with realistic geophysical properties, an AI

can learn to optimize scheduling. However, as with many machine learning algorithms, there is a

boundary to the above agent’s knowledge. If in the real world a state is experienced by the agent

that it has not seen before, it may suggest an action which would be detrimental to operations.

The suggestion for a carbon storage firm would then be to model their reservoir using geostatistical

techniques, train an RL agent with realistic rewards, and use the resulting optimal schedule in

conjunction with human expertise. Allowing for human intervention where necessary.

Various extensions can be made to this work, including training with realistically shaped reser-

voirs, introducing stochasticity to the offset credit price of carbon, and using geo-statistical infer-

ence to model reservoir characteristics. As mentioned, the OPM simulator has the ability to model

multi-phase fluid flow in highly complicated geophysical structures. Moving to a model that has

a geo-physically realistic shape would enhance results. The Canadian government’s commitment

to cut emissions has involved a scheduled increase of carbon offset prices overtime. Introducing a

stochastic carbon injection price into the model would result in more realistic results. The cost of

drilling wells for production or observation is tremendous. Often times 7 observation points (as used

in the above model) is quite unrealistic. Using geo-physical observation methods and geo-statisical

interpolation can cut down on such costs for firms and improve the implementation of such results.

In conclusion, the above findings show that reinforcement learning can be used in novel envi-

ronments to find non-instinctive solutions to problems. These results should be investigated further

19
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with more realistic reservoir shapes, implementing full cost analyses, and stochasticity in prices. In

addition to optimizing profit for a particular storage firm, this agent has shown efficiency in being

able to store as much carbon as possible without inducing large amounts of pressure. If Canada is

going to drastically reduce its net CO2 emissions in the coming years, reinforcement learning can be

a powerful tool to help do so.
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Appendix A

OPM Flow Dynamics

For each of the components in OPM the accumulation terms and fluxes are:

Aw = mϕbwsw

Ao = mϕ(boso + rogbgsg)

Ag = mϕ(bgsg + rgoboso)

and

uw = bwvw

uo = bovo + rogbgvg

ug = bgvg + rgobovo

The system is subject to the following closure equations and boundary conditions

vα = −λαK(∇pα − ραg)

sw + so + sg = 1

pc,ow = po − pw

pc,og = po − pg
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Table A.1: Environment Variables

Variable Description

ϕ porosity

mϕ pore volume multiplier as a function of pressure

ϕref constant reference porosity

pα pressure for phase α

bα shrinkage/expansion factor for phase α defined as ratio of surface volume at standard

conditions to the reservoir volume for a given amount of fluid

rgo gas-oil ratio of dissolved gas to oil in the oleic phase

rog oil-gas ratio of vaporized oil to gas in the gaseous phase

sα saturation of phase α

pc,αβ capillary pressure between phases α and β

K permeability of the porous medium

kr;α relative permeability for phase α

µα viscosity of phase α

λα mobility of phase α given by ratio of relative permeability to viscosity

vα velocity of phase α

uα velocity of component α

ρS,α surface density of phase α at one atmosphere

ρα density of phase α in the reservoir

g gravitational acceleration vector

qα well out flux density for pseudo component α

Let pbhp be the bottom hole pressure which is the pressure measured at some reference point

within the well. Volumetric flow rates are reservoir conditions are

qrα,j = Tw,jMα,j [pj − (pbhp,w + hw,j)]

Table A.2: Well Model Variables

Variable Description

qrα,j flow rate for phase α through connection j

Tw,j connection transmissibility factor

Mα,j mobility for phase α at connection j

pj pressure in the grid block that contains connection j

pbhp,w bottom hole pressure of well w

hw,j pressure difference between well connection j and bhp depth

To keep the system closed the following conservation equation is introduced for each component

Rα,w =
Aα,w −A0

α,w

δt
+Qα −

∑
j∈C(w)

qα,j = 0
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where C(w) is the set of connections for well w, qα,j is the flow rate of phase α through connection

j under surface conditions, and Aα,w is the amount of component α in the well.

For wells controlled by bhp the governing equation is

Rc,w = pbhp,w − ptargetbhp,w = 0

and for wells controlled by rate it is

Rc,w = Qα −Qtarget
α = 0

where ptargetbhp,w is the desired bhp for the well and Qtarget
α is the desired surface volume rate for

component α. For more information on fluid flow dynamics including the salt precipitation model

see the OPM manual.

Table A.3: Framework I Hyperparameters

Hyperparameter Value

µ(·|θµ) (Actor) layers 5

Table A.4: Framework II Hyperparameters

Hyperparameter Value

µ(·|θµ) (Actor) layers 5

µ(·|θµ) nodes 40 for each layer

Q(·|θQ) (Critic) layers 5

Q(·|θQ) nodes 40 for each layer

Q(·|θQ) nodes 40 for each layer

Q(·|θQ) nodes 40 for each layer
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