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1 Abstract

This report is a review of the paper “Mean Field Games in a Stackelberg problem with an
informed major player” [4]. The paper analyzes the effect that an imbalance of information has
on a Stackelberg problem with a large number of small followers. In particular, the leader receives
a private signal about the world and must optimize their cost, taking into account the decisions
of the small players. The small players learn this signal through the major player’s action.
Specific assumptions on the cost functions of the players allows for the analysis of a modified
information-based mean field system. The solution to this system is used to approximately
solve the N -small player problem. This report consists of a review of the current literature, the
mathematical background required to understand the analysis, and a detailed summary of the
paper with some ideas for possible future extensions.
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2 Introduction

In order to make the best decision in a situation, information is required. In games, sce-
narios in which one’s outcomes are affected by others’ actions, acquiring information about your
environment and others is particularly important. In the paper [4] Bergault, Cardaliaguet, and
Rainer analyze the effects of the release of restricted information by a leader with a large number
of followers in a stochastic setting. The setup of the paper is visualized in figure 1. At time t = 0
(the left graphic of 1) “nature” chooses a state variable denoted as i according to a distribution
(pi). This information is private to the major player. At time t ∈ (0, T ], for some terminal time
T , the major player takes an action (the right graphic of 1). The small players, still affected
by i, attempt to infer something about its realization through the action of the major player.
The collective distribution of the small players denoted by mt then affects the cost of the major
player. As a result of nature and the small players affecting the major player, she is incentivized
to hide her knowledge by inducing some randomness into the action. A canonical example for
this setting would be a scenario in which a hedge fund learns some information about the mar-
ket that smaller traders would not have the capacity to observe. Assuming all the players are
rational and optimizing, an equilibrium is sought for this setting.

Although a traditional equilibrium could be used to find a solution to this game, its solution
would not allow for an accurate description of the situation. For instance, in the financial setting
mentioned, small traders may look to the hedge fund before making financial decisions to gain
information about the markets. That is, the situation has a leader and followers [3]. This gives
rise to a Stackelberg solution to the problem. Such a solution is a collection of actions in a leader
- follower game where given what the leader is playing, the followers are choosing from among
their best options. The leader optimizes with respect to the worst case scenario from among
the best options for followers [3, p. 133]. This can be thought of as a minimax decision rule
for the leader [31]. Given that the best option set for the followers is not too complicated, this
gives a robust definition of equilibrium that incorporates the sequential decision making present.
The problem now becomes, how does one solve for the best decision set for the small players in
this setup? Bergault, Cardaliaguet, and Rainer do this by instead looking at a corresponding
mean-field game (MFG) and use its solution to approximate the optimal decisions for the small
players. Before moving into their methodology, a review of the current literature and some
mathematical background is required.
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Figure 1: The Stackelberg game at time 0 and t ∈ (0, T ] respectively

3 Literature Review

Games with incomplete information have been studied extensively in traditional Game
Theory. In static Bayesian game theory players’ have types that determine outcomes [18].
Players know their own type and holds beliefs about the types of others. This uncertainty can
be extended to the state of the world. Although the model Bergault et al. analyze is not
explicitly framed in a static Bayesian setting, there is a valid interpretation of it as a Harsanyi
type game [18] if players’ action sequences were fixed at t = 0. In that case, “nature“’s action
would only be observed by the major player and there is a single type of small player. The
fixing of the action is extremely restrictive as it does not allow for the small players to update
their beliefs during play. In contrast, repeated games with incomplete information (see [1])
allow for this updating. In the repeated two-player discrete games explored in [1] one player
has informational advantages. Still, to get to the scenario of interest, the continuous time case
must be considered. Inspired by [1], Cardaliaguet and Rainer developed a particular two player
stochastic setup in 2009 [6]. In this paper the terminal costs of two players are determined by
nature initially. Without knowledge of the other’s realization they optimize while controlling
the same state. In Section 5, Cardaliaguet and Rainer develop the theory to include the running
cost of the players. This results in a setup that bears a striking similarity to the present paper.
The extension to a large number of small players requires a more complicated analysis: mean
field game theory.

Since their creation by Lasry-Lions [25] and Huang-Caines-Malhamé [20], mean field games
have seen a lot of development and applications to various control problems [5]. However, a
restriction that is present in the base assumption of an MFG (to be seen in 5) is the homogeneity
of the players. One way to relax this is to include a “major” player that does not contribute
to the mean field directly. However, the stochasticity of the major player necessarily adds a
common noise element to the MFG system. This was originally developed in [19] and has seen
use in a variety of contexts including modeling market-making problems [2], the evolution of
interest rates [12], and the effectiveness of carbon emission regulation [13]. As noted in [4], there
is still room for development on MFGs with imperfect information. One approach employs
nonlinear filtering of agents’ state processes. In [29] each agent observes some nonlinear and
noisy observation of their own state. Another approach to partial information is [11] in which
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different sub groups of agents have different beliefs about an underlying price process. There
has been some work to use the above in problems with a major player [4]. [28] explores a setting
with nonlinear dynamics and costs where a major agents state is only partially observed. Under
a slightly different information setup, [17] has explored the use of Kalman filters in a linear-
quadratic MFG setting. However, here both the minor and major agents do not fully observe
their own or each others states’. The particular MFG system used in [4] is a modification to
the one introduced in [7]. To simplify the Stackelberg problem, uniqueness of the MFG solution
is required. This is a complicated task considering the need for common noise as a result of
the major player and the information process for the small players. However, Theorem 4.2 of
[7] establishes this with some assumptions on the separability of costs shown in 7 (see B.1 for
an outline). Further, the use of this equilibria as an approximation to the N−player setting
(11.1) requires a modification to the work done in [22]. In particular the result that every weak
solution of a MFG with common noise can be obtained as a limit of approximate equilibria from
the corresponding N−player game.

In the end, the paper “Mean Field Games: A Stackelberg Problem with an Informed Major
Player” extends the extant literature by considering a framework where the major player can
actively manipulate her action to deceive the small players. To be able to understand their work,
some mathematical background will be introduced.

4 Mathematical Background

Background in several areas is required to understand the tools used to find solutions of
MFGs. In particular, stochastic calculus, Hamilton-Jacobi Bellman equations, and Fokker-
Planck equations. Once this background has been developed, following [5] the existence and
uniqueness of a simple mean field game is shown under standard assumptions.

4.1 Stochastic Calculus

To perform further analysis, a probability space that incorporates the dimension of time in
a well-defined way is required.

Definition 4.1. A complete filtered probability space [30] is a tuple (Ω,F ,F = (Ft)t≤T ,P)
where

• Ω is an arbitrary set

• F is a σ−algebra

• F = (Ft)t≤T is a right continuous filtration i.e.

– ∀t ≤ T Ft ⊂ F are σ−algebras

– Ft ⊂ Fs if t ≤ s

– Ft = ∩ϵ>0Ft+ϵ

• F0 contains all subsets of null sets

• P is a probability measure

A process is a collection of random variables indexed by time {Xt}0≤t≤T defined on this space.
The notion of the filtration implies other time-dependent definitions of measurabiltiy. In par-
ticular, {Xt} is said to be F−adapted if ∀t ∈ [0, T ] Xt is Ft−measurable [30]. On top of
measurability requirements, some assumptions on the continuity of processes are useful.
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Definition 4.2. [21] A process {Xt} is said to be càdlàg or right continuous left limit exists
(RCLL) if ∀ω ∈ Ω and t0 ∈ [0, T ]

• limt↘t0 Xt(ω) = Xt0(ω)

• limt↗t0 Xt(ω) exists

In the main theorem of [4] the result is firstly proven for a specific filtered probability space 8.1:

Definition 4.3. Firstly consider the measurable space (C([0,∞)),F) where F are the Borel
sets generated by cylinder sets of the form C = {ω ∈ C([0,∞)) : (ω(t1), ...., ω(tn)) ∈ A} where
A ∈ B(Rd). Equipping this with:

• The natural filtration Ft = σ(ωs : 0 ≤ s ≤ t) in addition to null sets

• A measure W , the Weiner measure such that

Bt(ω) = ω(t) for 0 ≤ t < ∞ is a Brownian motion

where completions to the σ−algebras yields the canonical probability space (Ω,F ,Ft,W ) for
Brownian motion [21]

Brownian motion is an example of an important class of processes, martingales.

Definition 4.4. An adapted process (Xt)t≤T is a martingale [27] if E|Xt| < ∞ ∀t ∈ T and

E[Xt|Fs] = Xs a.s for 0 ≤ s ≤ t ≤ T

A slightly more general version of a martingale is a semimartingale (see [27]). On this class of
functions, one can integrate processes with respect to them.

Definition 4.5. The stochastic integral ([27]) of a simple process with respect to a semimartin-
gale M is a random process defined as∫ t

0

αsdMs =
n∑

k=1

αk(Mtk+1∧t −Mtk∧t)

where a simple process takes the form αt =
∑n

k=1 αkI(tk,tk+1](t)

This definition can be extended to more general processes via the density of simple processes on
a Hilbert space. On semimartingales in particular, an incredibly important theorem allows one
to take derivatives of functions of processes.

Proposition 4.1. Given a continuous semimartingale X valued in Rd and f a function of class
C1,2 on T ×Rd. Itö’s formula ([21]) gives that (f(t,Xt))t∈[0,T ] is a semimartingale and we have
for all t ∈ [0, T ]

f(t,Xt) = f(0, X0)+

∫ t

0

∂f

∂t
(u,Xu)du+

d∑
i=1

∫ t

0

∂f

∂xi

(u,Xu)dX
i
u+

1

2

d∑
i,j=1

∫ t

0

∂2f

∂xi∂xj

(u,Xu)d⟨X i, Xj⟩u

With these tools in hand, one can look to study solutions to stochastic differential equations.
Given a probability space (Ω,F ,F,P) that supports a Brownian motion W = (Wt)t≥0 consider
the equation {

dXt = bt(Xt)dt+ σt(Xt)dWt for 0 ≤ t ≤ T

X0 = ξ
(1)

There are different notions of a solution to this equation. The most natural one being
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Definition 4.6. A strong solution of the above SDE starting at t is a progressively measurable
process X (see [30] for the definition of progressive) lying on (Ω,F ,F,P) such that∫ s

t

|b(u,Xu)|du+

∫ s

t

|σ(u,Xu)|2du < ∞ a.s ∀t ≤ s ≤ T

and the following relations:

Xs = Xt +

∫ s

t

b(u,Xu)du+

∫ s

t

σ(u,Xu)dWu t ≤ s ≤ T

holds true a.s.

With some basic assumptions, one can guarantee the existence of such a solution.

Theorem 4.1. In particular, if one assumes that a (deterministic) constant K and a real-valued
process κ such that for all t ∈ T , ω ∈ Ω, and x, y ∈ Rn

|b(t, x, ω)− b(t, y, ω)|+ |σ(t, x, ω)− σ(t, y, ω)| ≤ K|x− y|
|b(t, x, ω)|+ |σ(t, x, ω)| ≤ κt(ω) +K|x|

where

E
[∫ t

0

|κu|2du
]
< ∞,∀t ∈ T

there exists for all t ∈ T , a strong solution to the SDE 1 starting at time t [30]

It is often easier to relax the assumption that the solution lies on the same probability space.
This is referred to as a ‘weak’ solution to 1.

Definition 4.7. A weak solution (2.10 in [30]) to the SDE 1 with initial distribution µ ∈ P(Rm)
is a tuple (Ω̃, F̃ , F̃, P̃, W̃ , X̃) where the following holds:

• (Ω̃, F̃ , F̃, P̃) is a complete filtered probability space

• W̃ is an (F̃, P̃) Brownian motion

• X̃ = (X̃t)t∈[0,T ] is an (F̃, P̃)−semimartingale

• X̃0 ∼ µ

• The SDE is satisfied in this space:

X̃t = X̃0 +

∫ t

0

b(s, X̃s)ds+

∫ t

0

σ(s, X̃s)dw̃s for t ∈ [0, T ]

Although the definition of weak solution appears quite broad, two weak solutions can be com-
pared. In particular, pathwise uniqueness holds for 1 on (Ω,F ,P) if given two weak solutions
(they may have different filtrations and brownian motion on those filtrations)

P(Xt = X̃t ∀0 ≤ t < ∞) = 1

It turns out that this condition allows one to conclude strong existence of 1 using weak existence.
Consider the following corollary of Yamada & Watanabe (1971) (Theorem 5.3.20 in [21]):

Proposition 4.2. The existence of a weak solution to 1 and path-wise uniqueness implies strong
existence of 1

This proposition will be essential later on to prove the strong existence of a complicated MFG
8.1.
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4.2 Hamilton - Jacobi - Bellman Equations

In the problem, small agents seek to minimize their own cost subject to their state. A
simple version of this, without the interaction from others is given in the following overview of
the outline in [27] and [30]:

Definition 4.8. (Cost-minimization Control Problem) Choose a control {αs} in the problem

inf
α
E
[∫ T

0

L(Xαs
s , αs)ds+G(XαT

T )

]
Where {Xt}t∈[0,T ] in Rd is a state process that follows the SDE:

dXt = b(Xt, αt)dt+ σ(Xt, αt)dBt

and f : [0, T ] × Rn × A → R and g : Rn → R are the running and terminal cost functions
respectively.

The PDE approach to dynamic programming gives a way to find a solution to the above.

Definition 4.9. Denote by A the set of control processes α such that

E
[∫ T

0

|αt(0)|2dt
]
< ∞

and the set A(t, x) ⊂ A the controls such that

E
[∫ T

t

|L(X t,x
s , αs)|ds

]
< ∞

where X t,x
s is the process {Xs}s≥t conditioned such that at t it is x.

If one is at x at time t, they must still choose an optimal control for the rest of the time period.
The following functional referred to as the ‘gain function’ J for α ∈ A(t, x) represents this
situation

J(t, x, α) = E
[∫ T

t

L(X t,x
s , αs)ds+G(X t,x

T )

]
Optimizing over the possible controls taken yields the value function:

v(t, x) = inf
α∈A(t,x)

J(t, x, α)

This function may change over time, however, intuition implies that if a player is playing opti-
mally now for the rest of the time period, they shouldn’t change their mind about their control
in the future. This is reflected in the following principle:

Principle 4.1. For any time point s ∈ [t, T ]:

v(t, x) = inf
α∈A(t,x)

E
[∫ s

t

L(X t,x
u , α)du+ v(s,X t,x

s )

]
The natural question is, what happens to this equation when s ↘ t? Assuming v is smooth
enough, Itö’s (4.1) and the MVT give a workable result. Informally, consider v at time t + h.
Applying Itö’s yields that
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v(t+ h,X t,x
t+h) = v(t, x) +

∫ t+h

t

(
∂v

∂t
+ La(v)

)
+ martingale

Where La is the operator given by

La(v) = b(x, a) ·Dxv +
1

2
Tr(σ(x, a)σT (x, a)D2

xv)

Taking the expectation of each side and h ↘ 0 with the MVT yields that

−∂v

∂t
(t, x)− inf

a∈A
[Lav(t, x) + L(x, a)] = 0, ∀(t, x) ∈ [0, T )× Rn (2)

This equation can be simplified by introducing a new function.

Proposition 4.3 (Hamilton-Jacobi Bellman Equation). Given a function H defined as

H(t, x, p,M) = inf
a∈A

[
b(x, a) · p+ 1

2
Tr(σσT (x, a)M) + L(x, a)

]
called the Hamiltonian, the above becomes

−∂tv(t, x)−H(t, x,Dxv(t, x), D
2
xv(t, x)) = 0 ∀(t, x) ∈ [0, T )× Rn (3)

See [27] for a more detailed view into the verification theorem for this PDE that allows one to
attain optimal controls.

4.3 A Simple N-Player Stochastic Game

The following four subsections are mainly taken from the excellent notes produced by
Cardaliaguet [5]. Now that the theory for how a single player may optimize their costs by
picking a control in accordance with their HJB equation, the question now becomes how this
can applied to solve N−player games.

Consider a game with N players. Having an individual player be represented by the index
i (i = 1, ..., N) with a control αi pushing their position process X i

t ∈ Rd by the SDE 1 with
respect to a individual Brownian motion (Bi

t).

X i
t = X i

0 +

∫ t

0

αi
sds+

√
2Bi

t

It is assumed that ∀i X i
0 ∼ m0 and that each player’s cost [5] is

Ji(α
1, ..., αN)

= E

[∫ T

0

1

2
|αi

s|2 + F

(
X i

s,
1

N − 1

∑
j ̸=i

δXj
s

)
ds+G

(
X i

T ,
1

N − 1

∑
j ̸=i

δXj
T

)]

A tuple of games controls (α1, ..., αN) is considered a solution to the above if no player can
deviate to improve their outcome. Formally:

Definition 4.10. The controls (α̃1, ..., α̃N) are considered an open-loop Nash equilibrium (9.2
in [30]) if ∀i ∈ {1, ..., N}

JN
i (α̃1, ..., α̃N) ≤ JN

i (α̃1, ..., α̃i−1, α, α̃i+1..., α̃N) ∀α ∈ A
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When finding such an action tuple, difficulty arises with analyzing the effect of the distribution
of the other players 1

N−1

∑
j ̸=i δXj

s
. In particular, it is not clear how to use the above discussion

on the HJB equation 7 with this empirical distribution to solve this. However, if one assumes
homogeneity among the players and takes N → ∞, 1

N−1

∑
j ̸=i δXj

s
may converge to a distribution

m ∈ P(Rd). It will be shown that this heuristic argument yields an approximate solution to
4.10. The next section is dedicated to analyzing the flow of the measure m over time.

4.4 Fokker-Plank Equation

Given a vector field b : Rd × [0, T ] → R consider the PDE system{
∂tm = ∆m+ div(b ·m) in (0, T )× Rd

m(0) = m0

(4)

The vector b will be replaced by the derivative of the Hamiltonian Hξ(x,Dϕ). It is assumed that
the vector field b : Rd × [0, T ] → Rd is continuous, uniformly Lipschitz continuous in space, and
bounded. Under these assumptions, one can consider a weak solution to the above.

Definition 4.11. m is a weak solution to the above if m ∈ L1([0, T ], P1) is such that, for any
test function φ ∈ C∞

c (Rd × [0, T )), one has∫
Rd

φ(x, 0)dm0(x) +

∫ T

0

∫
Rd

(∂tφ(x, t) + ∆φ(x, t) + ⟨Dφ(x, t), b(x, t)⟩)dm(t)(x) = 0

Going back to the process which the agents follow,{
dXα

t = b(Xt, t)dt+
√
2dBt

X0 = Z0

From 4.1 such assumptions on b result in an unique solution to the above SDE. Further, the law
of this SDE follows solves the equation in the weak sense.

Proposition 4.4. If L(Z0) = m0, then m(t) = L(Xt) is a weak solution of the system

Proof. Following the definition of a weak solution, let φ ∈ C∞
c (Rd × [0, T )). Considering the

process φ(Xt, t), since φ is C2 and C1 in space and time respectively, Itô’s (cite Le Gall) gives
that

φ(Xt, t) = φ(Z0, 0) +

∫ t

0

[φt(Xs, s) + ⟨Dφ(Xs, s), b(Xs, s)⟩+∆φ(Xs, s)]ds+

∫ t

0

⟨Dφ(Xs, s), dBs⟩

Taking expectation yields

E[φ(Xt, t)] = E
[
φ(Z0, 0) +

∫ t

0

[φt(Xs, s) + ⟨Dφ(Xs, s), b(Xs, s)⟩+∆φ(Xs, s)]ds

]
Since m is the law of Xt this just results in

∫
Rd

φ(x, t)dm(t)(x) =

∫
Rd

φ(x, 0)dm0(x)

+

∫ t

0

∫
Rd

[φt(x, s) + ⟨Dφ(x, s), b(x, s)⟩+∆φ(x, s)]dm(s)(x)ds
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Plugging in t = T one yields that

0 =

∫
Rd

φ(x, 0)dm0(x) +

∫ T

0

∫
Rd

[φt(x, s) + ⟨Dφ(x, s), b(x, s)⟩+∆φ(x, s)]dm(s)(x)ds

Since T is not in the support of φ by assumption φ(x, T ) = 0.

This result is used to find bounds on the distance between measures A.1. This is used later in 4.2
to ensure a fixed point theorem can be applied to find a solution to the MFG system described
below.

4.5 Mean-Field Equation

The tools have been developed to analyze the main object of consideration, the mean-field
system. Consider measures m ∈ P1 with the Kantorovitch-Rubinstein distance d1(µ, ν) 5.1.
One seeks solutions (ϕ,m) that satisfy the following system

∂tϕ = −∆ϕ+
1

2
|Dϕ|2 − F (x,m) in (0, T )× Rd

∂tm = ∆m+ div(Du ·m) in (0, T )× Rd

m(0) = m0, ϕ(x, T ) = G(x,m(T ))

(5)

Assumptions 4.1. To ensure existence and uniqueness of a solution, assumptions on the value
functions F and G and the initial distribution m0 are required:

• F and G are uniformly bounded by C0 over Rd×P1 and they are Lipschitz continuous with
respect to space and measure (using the Kantorovich distance)

|F (x1,m1)− F (x2,m2)| ≤ C0[|x1 − x2|+ d1(m1,m2)] ∀(x1,m1), (x2,m2) ∈ Rd × P1

|G(x1,m1)−G(x2,m2)| ≤ C0[|x1 − x2|+ d1(m1,m2)] ∀(x1,m1), (x2,m2) ∈ Rd × P1

• The initial measure m0 has a Hölder continuous density with respect to the Lebesgue mea-
sure such that

∫
Rd |x|2m0(x)dx < ∞

• Monotonicity hold for F and G. That is,∫
Rd

(F (x,m1)− F (x,m2))d(m1 −m2)(x) > 0 ∀m1,m2 ∈ P1,m1 ̸= m2∫
Rd

(G(x,m1)−G(x,m2))d(m1 −m2)(x) ≥ 0 ∀m1,m2 ∈ P1

Theorem 4.2 (Theorem 3.1 and 3.6 [5]). Under 4.1, there is a unique classical solution
to the MFG system 5

Before getting to the proof of this, a few asides must be made. In particular, some results about
a generalized heat equation:

Theorem 4.3 (Theorem 5.1 of [24]). Consider the heat equation{
∂tw = ∆w − ⟨a(x, t), Dw⟩ − b(x, t)w + f(x, t) in Rd × [0, T ]

w(x, 0) = w0(x) in Rd
(6)
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with a : Rd × [0, T ] → R, b, f : Rd × [0, T ] → R and w0 : Rd → R belonging to Cα for α ∈ (0, 1),
then the above heat equation has a unique weak solution in C2+α. Further, if a = b = 0 and f is
continuous and bounded, any classical, bounded solution w of the above satisfies for any compact
K ⊂ Rd × (0, T ),

sup
(x,t),(y,s)∈K

|Dxw(x, t)|+Dxw(y, s)

|x− y|β + |t− s|β/2
≤ C(K, ∥w∥∞)∥f∥∞

where β depends on the dimension d and C(K, ∥w∥∞) on the compact set K, d, and ∥w∥∞
The essence of the proof 4.2 is to create a mapping from measures to measures that involves the
heat equations present in the system. 4.3 will be used to ensure the map is well defined. This
map will be on the following set of measures:

Definition 4.12. Given some constant C1 let K be the set of maps C0([0, T ],P1) such that

sup
s ̸=t

d1(µ(s), µ(t))

|t− s| 12
≤ C1

and

sup
t∈[0,T ]

∫
Rd

|x|2dm(t)(x) ≤ C1

From A.1 and lemma 5.7 of [5] K is a convex, closed, and compact subset of C0([0, T ],P1).

Using the above results and definitions the proof of existence and uniqueness to the MFG 5 can
be started.

Proof of Theorem 4.2. We begin by defining a mapping from K, Ψ. Let µ ∈ K. Let ϕ be the
unique solution to the equation∂tϕ = −∆ϕ+

1

2
|Dϕ|2 − F (x, µ(t)) in (0, T )× Rd

ϕ(x, T ) = G(x, µ(T )) in Rd
(7)

With this define m = Ψ(µ) as the unique solution to{
∂tm = ∆m+ div(Dϕ ·m) in (0, T )× Rd

m(0) = m0 in Rd
(8)

We now aim to show that Ψ is well-defined and continuous. We do this with two applications
of 4.3 on the above systems to ensure uniqueness of the output of Ψ.

Firstly, consider the transformation w = e
ϕ
2 of ϕ. Then

−∂tw −∆w = −∂t
(
e

ϕ
2

)
−

d∑
i=1

∂2
xi

(
e

ϕ
2

)
= −1

2
e

ϕ
2 ∂tϕ−

d∑
i=1

∂xi

(
1
2
e

ϕ
2 ∂xi

ϕ
)

= −1
2
w ∂tϕ−

d∑
i=1

(
1
4
w(∂xi

ϕ)2 + 1
2
w ϕxixi

)
= −1

2
w ∂tϕ− w

(
1
4

d∑
i=1

ϕ2
xi
+ 1

2

d∑
i=1

ϕxixi

)
= w

(
−ϕt − 1

4
|∇ϕ|2 − 1

2
∆ϕ
)

=
−w

2

(
2ϕt +∆ϕ+ 1

2
|∇ϕ|2

)
11



Through a rescaling of time in the input of ϕ and the fact that it satisfies 7 yields that{
− ∂tw = ∆w − wF (x, µ(t)) in Rd × [0, T ]

w(x, T ) = eG(x,µ(T ))/2 in Rd
(9)

Now, since µ ∈ K and F and G satisfy the Lipschitz conditions outlined in 4.1. We get that
F (x,m(t)) and eG(x,µ(T )/2) are inside Cα where α = 1

2
. Thus, Theorem 4.3 can be applied to find

that there is a unique w which satisfies this equation and is inside C2+α. Thus a unique ϕ exists
that satisfies the above and is inside C2+α.
We wish to apply 4.3 to the above Fokker-Planck equation. Firstly, it must be noted that the
Fokker-Planck equation can be written in the form:

∂tm−∆m− ⟨Dm,Dϕ(t, x)⟩ −m∆ϕ(x, t) = 0

Since ϕ ∈ C2+α the maps (by definition of Holder continuity) a(x, t) = Dϕ(x, t) and b(x, t) =
∆ϕ(x, t) belong to Cα. Thus, 4.3 can be applied again to find that this is uniquely solvable and
m ∈ C2+α. So, Φ(µ) is well defined. We wish to show that µ ∈ K to begin setup a use of A.1. In
the above analysis for ϕ an application of the comparison principle yields that Dϕ is bounded by
the Lipschitz constant C0. Combining this with lemma A.1 yields that m ∈ K by its definition.
Thus, Ψ : K → K. We now wish to show Ψ is continuous to apply A.1.

Let {µn} ⊂ K converge to some µ (note by K’s closedness µ ∈ K) that is, d1(µn, µ) → 0.
From each of the steps above, we let (ϕn,mn) and (ϕ,m) be the corresponding solutions. Note
that the mappings (x, t) → F (x, µn(t)) and x → G(x, µn(T )) locally uniformly converge to
(x, t) → F (x, µ(t)) and x → G(x, µ(T )). Then, one gets the local uniform convergence of (un)
to u by standard arguments [5]. Since the (Dxϕn) are uniformly bounded, the (ϕn) solve an
equation of the form

∂tun −∆un = fn

where fn = 1
2
|Dxϕn|2 − F (x,mn) is uniformly bounded in x and n. The interior regularity from

4.3 implies that (Dxun) is locally uniformly Hölder continuous and therefore locally uniformly
converges to Dxu. This implies that any converging subsequence of the relatively compact mn

is a weak solution of 8, but m is the unique weak solution of 8 and so (mn) converges to m.
Thus, the map Ψ is continuous and so since K is compact and convex A.1 can be applied to
find that a fixed point exists and is a solution of the system. The proof on uniqueness relies on
truncating and regularizing the difference between two solutions of the system and applying the
weak formulation of the HJB and Fokker Planck equation. This combined with the monotonicity
assumption implies equality of the solutions. Please see [5] Theorem 3.6 for more detail.

Looking back to the original problem of finding equilibria 4.10 in the N−player game, it turns
out that this unique solution (ϕ,m) is useful in approximating Nash equilibria for large enough
N .

4.6 Application to N-Player game

Using the same notation as in the N−player game section, the optimal action α̃ it provides
is approximately a 4.10. This is given in the following theorem:

Theorem 4.4 (δ−Nash Equilibria, 3.8 in [5]). ∀δ > 0, there is some N0 such that, if N ≥ N0

then in the N−player game described above (α̃1, ..., α̃N) is a δ−Nash equilibrium in the sense
that

JN
i (α̃1, ..., α̃N) ≤ JN

i (α̃1, ..., α̃i−1, α, α̃i+1..., α̃N) + δ
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for any control α and i ∈ {1, ..., N}

This is the main use of mean field Systems. From a relatively simple PDE system, approximate
solutions to large player games can be found. Essentially the same process will be used to find
an approximate solution to the N−player Stackelberg game.

5 Some Definitions

Before getting into the exact methodology of the paper, some definitions and assumptions
that will be used are presented.

Definition 5.1. The set P2(Rd) ⊂ P(Rd) is the set of measures µ such that∫
Rd

|x|2dµ(x) < ∞

On this space, the measure d2 : P2(Rd)2 → R+ is defined as

d2(µ, ν) = inf
γ∈Γ(µ,ν)

∫
Rd

|x− y|2dγ(x, y)

where Γ(µ, ν) ⊂ P(Rd × Rd) is the set of all couplings of µ and ν. Other metrics are defined in
the same way, in particular d1.

However, unless otherwise specified, the work in this paper is done within P(Rd)

Definition 5.2. Fixing an I ∈ N+ consider the simplex ∆(I) defined as

∆(I) =

{
p ∈ RI

+ :
∑
i

pi = 1

}

Definition 5.3. A Polish space P [15] is a topological space (X, T ) that is separable and complete

Definition 5.4. D is defined to be the set of cadlag functions from R → ∆(I), endowed with
the Meyer-Zheng topology [26]

The following space will be used to define a relaxation of the major player’s problem.

Definition 5.5. On D endow a measurable space with the Borel σ-algebras induced by the Meyer-
Zheng topology on the coordinate mappings. Now, given a p0 ∈ ∆(I), denote by M(p0) the set
of probabilities over this measurable space such that (p(t) : t ∈ R) is a martingale with pt = p0

The major player will have a choice over this space. The small will have an initial guess p0 for
the probability distribution of i. The martingale property above ensures that this is consistent
with the rationality of the small players. See 10.2 for more detail on how this space is used.

6 The Game

Prior to an explanation of the Stackelberg problem, the players’ cost function are defined
for each realization i ∈ {1, ..., I} of nature.

Li : Rd × Rd → R

is the running cost for a small player to play a control and the interaction costs are denoted as

13



Fi, Gi : Rd × P2(Rd) → R

The major player’s cost is not assumed separable between the action and distribution element.
Further, it is denoted by a 0. That is,

L0
i : [0, T ]× U0 × P2(Rd) → R

is the running cost of the major player. Later in the analysis the players will be concerned with
the expected value of these costs given a distribution over I. That is, given a p ∈ ∆(I) and
x, u, ξ ∈ Rd and distribution m ∈ P(Rd) introduce another variable into the costs such that for
the small players

L(x, u, p) =
I∑

i=1

piLi(x, u), F (x,m, p) =
I∑

i=1

piFi(x,m), G(x,m, p) =
I∑

i=1

piGi(x,m)

Similarly for the major player:

L0(s, u0, p,m) =
I∑

i=1

piL
0
i (s, u

0, p,m) with the optimized L̄0(s, p,m) = inf
u0∈U0

L0(s, u0, p,m)

Further, the Hamiltonian for the small players, as a result of the separation present in their costs
is given as

H(x, ξ, p) = sup
u∈Rd

−ξ · u− L(x, u, p)

where ξ ∈ Rd is an adjoint variable.
The game can now be mathematically formalized. The randomness present is encapsulated

by nature sampling i ∼ ({1, ..., I}, p0) where p0 = (p0i )i=1,...,I .

• The goal of the major player is to then minimize over her random control denoted by
(u0 = (u0

i )i=1,...,I) a cost of the form

E
[∫ T

0

L0
i (t,u

0
i,t,mt) | i = i

]
where mt is the (random) distribution of the small players

• Observing the realization of u0
i of the informed player and their own state, the minor

players aim to minimize their cost using their control (αt)

E
[∫ T

0

Li(Xt, αt) + Fi(Xt,mt)dt+Gi(XT ,mT )

]
where (αt) is the control of a typical small player and their state is given by the process

Xt = Z +

∫ t

0

αsds+
√
2Bt

for t ∈ [0, T ] where Z ∼ m0 ∈ P2(Rd) and B is a standard d−dimensional Brownian
motion with Z,B and (i,u0) independent.

In order to begin to solve the above using the tools developed thus far, many assumptions will
be required to use theorems developed in past work. The next section will outline some of these
assumptions.
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7 Cost Function Assumptions

7.1 Major Player Assumptions

The set in which controls for the major player lies (U0, d0) is a compact convex subset of a
finite dimensional space. Further, for i = 1, ..., I,

L0
i : [0, T ]× U0 × P1(Rd) → R is continuous and bounded

7.2 Small Player Assumptions

For each i, the cost functions Fi, Gi : Rd × P1(Rd) → R are Lipschitz continuous and
bounded. Further,

sup
m∈P(Rd)

∥Fi(·,m)∥C2+α + ∥Gi(·,m)∥C2+α ≤ C for some C, α > 0

Further, another set of assumptions which are intrinsic to proving uniqueness of solutions later
on is that Fi, Gi are strongly monotone meaning ∃α > 0 such that∫

Rd

(Q(x,m1)−Q(x,m2))(m1 −m2)(dx) ≥ α

∫
Rd

(K(x,m1)−K(x,m2))
2dx

for Q = Fi or Gi for each i. And Fi is strictly monotone meaning∫
Rd

(Fi(x,m1)− Fi(x,m2))(m1 −m2)(dx) ≤ 0 ⇒ m1 = m2

for each i = 1, ..., I.
To exploit much of the work done in previous papers, in particular [7], regularity is required

of the small players’ Hamiltonians. That is,

• ∃C > 0 such that, ∀x, ξ ∈ Rd,

C−1|ξ|2 − C ≤ Hi(x, ξ) ≤ C(|x|2 + 1)

• ∀R > 0, Rd × BR ∋ (x, ξ) → Hi(x, ξ) is uniformly bounded and Lipschitz, ξ → Hi(x, ξ) is
uniformly convex

• ∀R > 0 ∥H(·, ·)∥C2+α(Rd×BR) ≤ CR

• For some λ0, C0 > 0 and all t ∈ [0, T ], ξ, ξ′ ∈ Rd and |z| = 1 we have

|DxH(x, ξ)| ≤ C0 + λ0(ξ ·DξH(x, ξ)−H(x, ξ))

λ0(DξH(x, ξ) · ξ −H(x, ξ)) +D2
ξξH(x, ξ)ξ′ · ξ′ + 2D2

ξxH(x, ξ)z · ξ′ +D2
xxH(x, ξ)z · z ≥ −C0

Example 7.1. The function H(x, ξ) = a(x)|ξ|2 satisfies the above regularity conditions.

8 The Information Based Mean Field System

With the above assumptions, the main driver of results in the paper can be introduced.
Firstly, let (Ω,F , (Ft)t≤T ,P) be filtered probability space. To incorporate the information gained
by the small players, consider a process

p = (pt) ⊂ ∆(I) adapted to (Ft)
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With this, consider the modified MFG system:


dϕt(x) = {−∆ϕt(x) +H(x,Dϕt(x), pt)− F (x,mt, pt)}dt+ dMt(x) in (0, T )× Rd

dmt(x) = {∆mt(x) + div(Hξ(x,Dϕt(x), pt)mt(x))}dt in (0, T )× Rd

m0(x) = m̄0s(x), ϕT (x) = G(x,mT , pT ) in Rd

(10)

There are two main differences between this and 5. Firstly, the generalization to a more com-
plicated Hamiltonian for the HJB is made. In addition, the process pt is featured as an input to
the Hamiltonian in the HJB and Fokker-Planck equation. Secondly, there is a separate stochas-
tic element Mt affecting the system. This results in the system becoming a stochastic partial
differential equation. It can be interpreted as the common noise felt by the small agents from
the random actions of the major player. This system is a modified version of systems seen in
past work. The existence of a solution to the common noise MFG was shown in [10] on a Torus
and in a separated Hamiltonian case. This was further expanded on in [7] and [9]. The proof
of existence is heavily influenced by the work done in [7]. The separability of the Hamiltonian
above is key for the main proof 8.1. The solution of the system is the following:

Definition 8.1. A triple (ϕ,m,M) is a solution to 14 on (Ω,F , (Ft),P) if

1. ϕ : [0, T ]× Ω → C(Rd) is a cadlag process adapted to (Ft) with ϕT (·) = G(·,mT )

2. M : [0, T ]× Ω → Mloc(Rd) ∩W−1,∞(Rd) is a cadlag martingale w.r.t (Ft) starting at 0

3. m : [0, T ]×Ω → P2(Rd) is a continuous process adapted to the filtration (Ft), with m0 = m̄0

such that mt has a bounded density on Rd P− a.s and for any t ∈ [0, T ]

4. ∃C > 0 such that, with probability 1, and for a.e. t ∈ [0, T ]

∥Dϕt∥∞ + ess supm+(D
2ϕt) + ∥Mt∥Mloc∩W−1,∞ + ∥mt∥∞ ≤ C

5. (ϕ,M) satisfies, in the distributional sense on Rd, for all t ∈ [0, T ] and P−a.s. the equality:

ϕt(x) = G(x,mT , pT )+

∫ T

t

(∆ϕs(x)−H(x,Dϕs(x), ps)+F (x,ms, ps))ds+Mt(x)−MT (x)

6. P-a.s. and in the sense of distributions, m sovles the equation

dmt(x) = {∆mt(x) + div(Hξ(x,Dϕt(x), pt)mt(x))}dt in (0, T )× Rd

This is seen to be exactly a regularized combined version of definitions 4.1 and 3.1 in [7].

Theorem 8.1. Under the assumptions outlined in 7, there exists a unique solution (ϕ,m,M).
Further, D2ϕt and Mt are absolutely continuous with Radon-Nikodym derivative bounded in L∞

P−a.s. and for every t ∈ [0, T ],

∥D2ϕt∥∞ + ∥Mt∥∞ ≤ C

In addition, if p,p̃ have the same law on D and (ϕ,m,M) and (ϕ̃, m̃, M̃) are the associated
solutions to the system, then (m, p) and (m̃, p̃) have the same law on C0([0, T ],P2(R2))×D

Proof Expanded Outline. A brief sketch of this proof is given in the text, however, there are
several substantial steps that are missed that should be mentioned. The proof of this theorem
hinges on the substantial work done in [7] (see 15 in the appendix). In particular, Theorem 4.1
and 4.2. There are four main steps to the proof:
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1. Firstly, the authors prove weak existence on the canonical space for Brownian motion 4.3.
This is done through a discretization of time to dampen the common noise’s effect.

2. Each discretization is treated as its own MFG and solved in a fixed point method similar
to that seen in 5 (see Lemma 4.2 and 4.3 in [7])

3. Lemma 4.5 takes the discretization to the limit and the proof of Theorem 4.1 establishs
that the limit is a solution to the MFG

4. Lastly, as a result of the strict monotonicity assumption in 7 and the separability of the
cost functions Theorem 4.2 shows that pathwise uniqueness holds for the system, which
when combined with the above existence of a weak solution and the Yamada Watanabe
theorem 4.2 implies the existence of the strong solution outlined in 8.1

As given in the text, the necessary bounds and regularity are proved using a representation with
a heat kernel.

The following proposition gives that the abstract HJB equation in 14 corresponds to a minimiza-
tion problem. In particular, the exact minimization problem the paper wishes to solve given an
arbitrary process (pt).

Proposition 8.1. Let (mt) be a continuous random process taking values in P2(Rd), adapted to
the filtration (Ft). Then the HJ equation

{
dϕt(x) = {−∆ϕt(x) +H(x,Dϕt(x), pt)− F (x,mt, pt)}dt+ dMt(x) in (0, T )× Rd

ϕT (x) = G(x,mT , pT ) in Rd
(11)

has a unique solution in the sense described above. Let (Ω1,F1,P1, (F1
t )) be another filtered

probability space supporting a Brownian motion B and a random variable Z of law m̄0 on Rd

and α∗ and X∗ being given by

X∗
t = Z −

∫ t

0

Hξ(X
∗
s , Dϕs(X

∗
s ), ps)ds+

√
2Bt, α∗

t = −Hξ(X
∗
t , Dϕt(X

∗
t ),mt, pt), t ∈ [0, T ]

Then, for any control α ∈ L2((0, T ))× Ω× Ω1) adapted to the filtration generated by (p,m,B),

EP⊗P1

[ϕ0(Z)] = EP⊗P1

[∫ T

0

(L(X∗
s , α

∗
s, ps) + F (X∗

s ,ms, ps))ds+G(X∗
T ,mT , pT )

]
≤ EP⊗P1

[∫ T

0

(L(Xs, αs, ps) + F (Xs,ms, ps))ds+G(X∗
T ,mT , pT )

]
− C−1EP⊗P1

[∫ T

0

|αs +Hξ(Xs, Dϕs(Xs), ps)|2ds
]

where Xt = Z +
∫ t

0
αsds+

√
2Bt for t ∈ [0, T ]

The above will be used to show the uniqueness of the MFG equilibrium (small player problem)
later on.
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9 The Stackelberg Problem

The majority of the heavy lifting has been completed in 8.1 and 8.1 to solve the Stackelberg
MFG game outlined in the introduction ([3], 133). This section of the paper outlines its use.

In reality, the major player must randomize her controls to some extent to hide their knowl-
edge of the realization of nature. If this wasn’t the case, the small players would be able to
immediately figure out what value nature takes and optimize accordingly, possibly negatively
affecting the major player. In a financial setting, a hedge fund may not want to immediately
liquidate their holdings in one stock after realizing it is overvalued. A random liquidation of
various shares over time with an overall goal of dropping that one stock would likely be optimal.
This is indeed the setup of the Stackelberg problem. The major player will choose among a
collection of random controls in order to possibly mislead the small players.

Definition 9.1. Starting at a time point t0 > 0 the set U0 are the measurable maps u0 : [t0, T ] →
U0, endowed with the L1−distance

d(u0, v0) =

∫ T

t0

d0(u0
s, v

0
s)ds ∀u0, v0 ∈ U0([t0, T ])

where U0 := U0([0, T ]) endowing it with the Borel σ−algebra generated by the above metric, and
the natural filtration (F ′

⊔)t∈[0,T ] = (σ(s → u0
s : s ≤ t)t)t∈[0,T ] ∆(U0) is the set of probabilities on

this space. With this set of probabilities defined, the major player has a choice over

u0 = (u0
i )i=1,...,I ∈ (∆(U0))I

The major players choice is random, but depends on the realization of nature. Thus, the action
u0 generates the probability Pu0

observed by the small players on (Ω0×U0,B(Ω0×U0)) defined
as

Pu0

({i} × A0) = p0iu
0
i (A) ∀i ∈ {1, ..., I}, A ∈ B(U)

The small players will observe the realization of the major player s → u0
s. Assuming that their

decisions are on a probability space (Ω1,F1,P1, (F1
t )) supporting B and a random initialization

Z on Rd of law m̄0, the joint filtered probability space which all players will be defined on is

given by (Ω0 ×U ×Ω1,B(Ω0 ×U)⊗F1, (Fu0,1
t ), Pu0 ⊗P1). Is is important to note that the joint

filtration F1, (Fu0,1
t ) is generated by the realizations of t → (u0

t , Bt). And so independence of
the processes would lead to a slight simplification of this space.

With this defined, in accordance with the discussion of Stackelberg equilibria in the intro-
duction, the major player’s problem is

Definition 9.2. The major player problem is

inf
u0∈(∆(U0))I

J0(u0) = inf
u0∈(∆(U0))I

(
sup

(αu0 ,mu0 )

EPu0⊗P1

[∫ T

0

I∑
i=1

p0iL
0
i (t, u

0
s,m

u0

s )ds

])
(12)

where (αu0
,mu0

) are the MFG equilibria associated to u0

That is, the major player is facing the worst case scenario of possible equilibria of the small
players. Where an equilibria of the small players is defined as

Definition 9.3 (MFG Equilibrium). Given a control u0 ∈ (∆(U0))I , and MFG equilibrium

associated to u0 is a pair (αu0
,mu0

) of processes on (Ω0×U×Ω1,B(Ω0×U)⊗F1, (Fu0,1
t ), Pu0⊗P1)

where αu0
takes values in Rd, and mu0

in P2(Rd), and
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1. αu0
is optimal in the control problem

inf
α
EPu0⊗P1

[∫ T

0

(Li(X
α
t , αt) + Fi(X

α
t ,m

u0

t ))dt+Gi(X
α
T ,m

u0

T )

]
where the infimum is taken over all Rd−valued (Fu0,1

t )−adapted controls α and

Xα
t = Z +

∫ t

0

αsds+
√
2Bt t ∈ [0, T ]

2. for any t ∈ [0, T ], mu0

t is the conditional law of XαuP 0

t given σ({s → u0
s : s ≤ t})

It is important to note that unlike other work in this area[14], the major agent must face
the worst case scenario based on the mean field equilibria induce by their action [4]. It turns
out that by a clever choice of information process (pt) in 14 the next section and an application
8.1 and 8.1 from the last section, one can ensure a unique MFG equilibrium exists.
Firstly, it will be shown that the best (and only case if rational and optimizing) for the small
players is one in which the outcome is given by the solution to 14 with a specific information
process. In the Stackelberg setting, the small players know the optimal control u0 and observe
the realization u0

i . Thus, the small players have access to their ‘best guess martingale’:

pu0

t = Eu0
[
ei|Fu0

t

]
=
(
Pu0

(i = 1|Fu0

t ), ...,Pu0

(i = I|Fu0

t )
)

From Probability theory, we know that the (pu0

t ) is a Fu0

t −martingale and instead consider its
cadlag 4.2 version ([21] Theorem 1.3.13). Heuristically this process is the “best” guess for the
small players. An important result is that independence between the action of the major player
and the process of the small player allows for this martingale to connect 14 and 9.3. Although
simple, the following Lemma allows for the use of properties of the system 14.

Lemma 9.1. Fix a control for the major player u0 and let (Ω1,F1,P1, (F1
t )) be a filtered space

supporting a Brownian motion B and a random variable Z on Rd of law m̄0. Let (mt) be a
random distribution of the players i.e. a P2(Rd)−valued and (Fu0

t )−adapted process. Then for

any (Fu0,1
t )−adapted control α and if

Xα
t = Z +

∫ t

0

αsds+
√
2Bt, t ∈ [0, T ]

then

EPu0⊗P1

[∫ T

0

(Li(X
α
t , αt) + Fi(X

α
t ,mt))dt+Gi(X

α
T ,mT )

]
= EPu0⊗P1

[∫ T

0

(L(Xα
t , αt,p

u0

t ) + F (Xα
t ,mt,p

u0

t ))dt+G(Xα
T ,mT ,p

u0

T )

]
Proof. This follows immediately from the independence of (Fu0

t ) and (F1
t ) and the definitions

of the cost functions given in 6

With this connection, the results from 8.1 are applied to show that there is in fact a unique
MFG equilibrium 9.3:
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Corollary 9.1. Under the same assumptions, given a control u0 of the major player, there is a
unique MFG equilibrium (αu0

,mu0
) associated to u0 given by

αu0

t = −Hξ(X
∗
t , Dϕt(X

∗
t ),p

u0

t ) (13)

with X∗
t = Z−

∫ t

0
Hξ(X

∗
s , Dϕs(X

∗
s ),p

u0

s )ds+
√
2Bt and mu0

= m, where (ϕ,m,M) is the unique

solution to the MFG system 14 associated to (pu0
) on (Ω0 × U0,B(Ω0 × U0), (Fu0

t ), Pu0
)

As mentioned in the text, this greatly simplifies the major players problem. The sup can be
ignored as any action they take will only result in a single equilibrium of the small players.

10 The Relaxed Problem

Although the major player’s problem is greatly simplified, to ensure the inf exists, a relax-
ation on the action space must occure. Consider:

Definition 10.1 (The Relaxed Problem). Recalling the space of measures 5.5, consider the
problem

min
P∈M(p0)

J̄0(P) where J̄0(P) := EP

[∫ T

0

min
u0∈U0

L0(s, u0,mP
s , ps)ds

]
where (ϕP,mP,MP) is the unique solution to 14 on (D,G,P, (FP

t )). That is, the system:


dϕP

t (x) = {−∆ϕP
t (x) +H(x,DϕP

t (x), pt)− F (x,mP
t , pt)}dt+ dMP

t (x) in (0, T )× Rd

dmP
t (x) = {∆mP

t (x) + div(Hξ(x,DϕP
t (x), pt)m

P
t (x))}dt in (0, T )× Rd

mP
0 (x) = m̄0s(x), ϕP

T (x) = G(x,mP
T , pT ) in Rd

(14)

Although the above problem looks quite different than the original MFG one, the next few
proposition reveals that it can guarantee getting ϵ close to an optimal action for the major
player.

Proposition 10.1 (3.4 in [4]). Let u0 ∈ (∆(U0))I , pu0
be given as the best option as above and

P its law on D. Then
J̄0(P) ≤ J0(u0)

where J0 is defined above. Further, given a P ∈ M(p0) there exists a sequence ū0,n ∈ (∆(U0))I

such that
lim
n

J0(u0,n) = J̄0(P)

Proposition 10.2 (3.5 in [4]). Under all the above assumptions, the minimizer in J̄0 exists

Proof. See

Corollary 10.1 (Existence of ϵ−minimizer in 9.2). ∀ϵ > 0 ∃u0,ϵ ∈ (∆(U0))I such that

J0(u0,ϵ) ≤ inf
u0∈(∆(U0))I

J0(u0) + ϵ

Proof. Let P∗ be the minimizer given by 10.2. By the first half of 10.1 we know necessarily that
∀u0 ∈ (∆(U0))I with pu0

and P its law,

J̄0(P∗) ≤ J̄0(P) ≤ J0(u0)
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And so
J̄0(P∗) ≤ inf

u0∈(∆(U0))I
J0(u0)

As P∗ ∈ M(p0) by assumption, the second half of 10.2 gives a u0,ϵ such that

J0(u0,ϵ) ≤ J̄0(P∗) + ϵ

≤ inf
u0∈(∆(U0))I

J0(u0) + ϵ

Although the optimal action from the major player has not been found, some clever compactness
arguments from [22] ensure that the above approximation is enough to get close to optimal in
the N−player game. The following section outlines this.

11 Applications To Finitely Many Players

Consider a space (Ω,F , (Ft),P) supporting N small players with controls (αN,j)j=1,...,N in
the Stackelberg setting 1 from the introduction. They are assumed to have symmetric costs
given by

JN,j(u0, αN,j, (αN,k)k ̸=j) = E
[∫ T

0

Li(X
N,j
t , αN,j

t ) + Fi(X
N,j
t ,mN,j

XN
t
)dt+Gi(X

N,j
T ,mN,j

XN
t
)

]
where mN,j

XN
t
= 1

N−1

∑
k ̸=j δXN,k

t

An approximate solution to this problem is a

Definition 11.1 (δ−Nash Equilibrium). Fixing u0, for δ > 0 a δ−Nash equilibrium for the
small players are controls such that for α and j = 1, ..., N

JN,j(u0, α, (αN,k
k ̸=j)) ≥ JN,j(u0, αN,j, (αN,k)k ̸=j)− δ

In this N−small player game, assume 7 again for the cost functions of the players. Further,
assume that the initial distribution m̄0 ∈ P1(Rd) has a smooth and bounded density and a finite
fourth moment. With this, the authors get the following three results:

Lemma 11.1. Under these assumptions, ∀δ > 0 ∃Nδ ∈ N such that, ∀u0 ∈ (∆(U0))I and
N ≥ Nδ there exists a δ−Nash equilibrium for (JN,j(u0, ·))

Proposition 11.1. Proposition 2 (4.3 in [4]) Under the above assumptions with ϵ > 0, there
exists δ > 0 and N ′

δ ≥ Nδ such that for any control u0, N ≥ N ′
δ, and δ−Nash equilibrium (αN,j)

for u0 satisfies

sup
t∈[0,T ]

E
[
d1(m

N
XN

t
,mu0

t )
]
≤ ϵ

where mN
XN

t
= 1

N

∑N
k=1 δXN,k

t
and (ϕu0

,mu0
,Mu0

) is the solution to the MF system associated to

(pu0
) (the information process we defined earlier).

The combination of the above yields the final result of the paper:

Theorem 11.1 (N−Player Optimality). Fix ϵ > 0 and let ū0 be an ϵ−minimizer for 9.2 provided
by 10.1. Then ∃δ > 0 and N0 ∈ N such that, ∀N ≥ N0, u

0 is 3ϵ−optimal for JN,0(·, δ)

That is, the optimal control for the major player in the MFG setting is approximately the optimal
control in the N−player setting assuming the small players are acting close to optimally.
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12 Extensions and Conclusion

There are three extensions to the work above which would add to the applicability of the
setting and the current literature of partial information mean field games. The first one being
an extension that the authors mention. That is to expand the allowed actions of the small
players. The current setup only allows for open-loop controls adapted to the realization of the
major player’s control. Allowing for more complicated dependence, for instance the closed-
loop setting, would allow the smaller players to react to themselves. This would expand the
applicability of the work. The authors mention that Lacker and Le Flem have already done
the heavy lifting in the ability to bring MFG equilibria to the N−player setting [23]. However,
the technicalities present in the relaxed problem would require ironing out. The second possible
extension would be to allow for a more complex state space for nature. For instance taking
I = R or another continuum. This of course would expand the applicability of the model to
many settings including finance. However, many of the proofs would have to be entirely reworked.
Finally, it is important to note that in [4] the major agent does not have their own process. This
would result in difficulty when modeling situations in which the major player and small players
are supposedly interacting within the same environment. Unfortunately, the canonical hedge
fund example is a representation of this. The hedge fund and small traders are trading in the
same market. Thus, the decision of a fund to transfer wealth around a market would have large
effects on the wealth of a small player. The present setup precludes the major player to more of
an observer in the market. In a similar setup, the major agent could have a process that affects
the costs and dynamics of the small agents. Depending on the exact details of the major players
process, it could be viewed as a noisey observation of the initial state chosen by nature allowing
for applications of nonlinear filtering in the decision making of the small players such as in [17].

sIn conclusion, Bergault, Cardaliaguet, and Rainer made an interesting contribution to
the developing theory of partial information mean field games. The use of the Stackelberg
equilibrium allowed for a natural interpretation of the game solved. Further, the paper connected
some of the authors’ quite diverse previous work ([6] and [7]). To expand on the above, various
extensions can be made to this work that would increase it’s applicability. Most pertinently,
however, the paper points to the large amount that can still be done to relax assumptions present
in the MFG framework. This includes perfect information, but also assumptions like rational
expectations among players and the concept of equilibrium itself. Further, there are still many
ideas from Dynamic Games that could still yet be realized in the MFG setting.
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A Mathematical Background

Lemma A.1 (Lemma 3.4,3.5 from [5]). Let m be defined as above. There are constants c0 =
c0(T ) and c1 = c1(T ) such that

d1(m(t),m(s)) ≤ c0(1 + ∥b∥∞)|t− s|
1
2 ∀s, t ∈ [0, T ]

and ∫
Rd

|x|2dm(t)(x) ≤ c1

(∫
Rd

|x|2dm0(x) + 1 + ∥b∥2∞
)

∀t ∈ [0, T ]

Proof. Let {Xt} be a process satisfying the SDE above. The process at s, t ∈ [0, T ] will have
measures m(s) and m(t) respectively by 4.4. Thus, the joint law of (Xt, Xs) ∈ Π(m(t),m(s))
and so if s < t

d1(m(t),m(s)) ≤
∫
R2d

|x− y|dγ(x, y)

= E|Xt −Xs|

≤ E
[∫ t

s

|b(Xτ , τ)|dτ +
√
2|Bt −Bs|

]
≤ ∥b∥∞(t− s) +

√
2(t− s)

Further, ∫
Rd

|x|2dm(t)(x) = E[|Xt|2]

≤ 2E

[
|X0|2 +

∣∣∣∣∫ t

0

b(Xτ , τ)dτ

∣∣∣∣2 + 2|Bt|2
]

≤ 2

[∫
Rd

|x|2dm0(x) + t2∥b∥2∞ + 2t

]
≤ 2c1

[∫
Rd

|x|2dm0(x) + 1 + ∥b∥2∞
]

where c1 is some constant dependent on T .

Theorem A.1 (Schauder’s Fixed Point Theorem [16]). Suppose K ⊂ X is nonempty, compact
and convex, and assume

A : K → K

is continuous. Then A has a fixed point in K.

B Background From Previous Papers

B.1 Mean Field Games with Common Noise and Degenerate Id-
iosyncratic Noise

In [7], Cardalaiaguet, Seeger, and Souganidis investigate modified notions of weak solutions of
the following MFG system:
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

dut =
[
−β∆ut − tr

(
at(x,mt)D

2ut

)
+Ht(x,Dut,mt)− 2β div(vt)

]
dt

+ vt ·
√
2β dWt, in [0, T )× Rd,

dmt(x) = div
{
β Dmt(x) + div

(
at(x,mt)mt

)
+mt DpHt(x,Dut,mt)

}
dt

− div
(
mt

√
2β dWt

)
, in (0, T ]× Rd,

m0(x) = m̄0(x), uT (x) = G
(
x,mT

)
, in Rd.

(15)

which is very close to a shifted version of 5. Indeed the change of variables given by

ũt(x) = ut(x+
√
2βWt) and m̃t = (Id−

√
2βWt)#mt

and similarly shifting all other functions of x in this way (denoting their transforms by a tilde
as well) yields an MFG that is beginning to reflect 14. The new system becomes

dũt = {−tr(ãt(x, m̃t)D
2ũt) + H̃t(x,Dũt, m̃t)}dt+ dMt in [0, T )× Rd

dm̃t(x) = div{div(ãt(x, m̃t)m̃t) + m̃tDpH̃t(x,Dũt, m̃t)}dt in (0, T ]× Rd

m̃0(x) = m̄0(x), ũT (x) = G̃(x, m̃T ) in Rd

(16)

The solution to the backward stochastic HJB equation is said to be weak in the PDE sense and
strong in the probabilistic one [7]. In particular, Definition 3.1 of [7] states the specific definition
of this type of solution.

Theorem B.1 (4.1 in [7]). Assuming essentially the same assumptions as seen above, there
exists a weak solution of 16 with respect to the Weiner measure.

Weak solutions can be turned into strong when pathwise uniqueness holds. With several as-
sumptions, this in fact holds with our system.

Assumptions B.1. Consider the assumptions:

• The Hamiltonian is separable, that is,

Ht(x, ξ,m) = Ht(x, ξ)− Ft(x,m)

• And F and G are strictly monotone i.e. ∀m,m′ ∈ P2(Rd) and t ∈ [0, T ]
∫
Rd

(Ft(x,m)− Ft(x,m
′))(m−m′)(dx) ≥ 0∫

Rd

(G(x,m)−G(x,m′))(m−m′)(dx) ≥ 0

(17)

with equality holding if and only if m = m′

• at(x,m) = at(x) (independence from m)

Under another transformation, 16 then becomes
dũt = {−tr(ãt(x)D

2ũt) + H̃t(x,Dũt)− F̃t(x, m̃t)}dt+ dMt in (0, T )× Rd

dm̃t(x) = div{div(ãt(x)m̃t) + m̃tDpH̃t(x,Dũt)}dt in (0, T )× Rd

m̃0(x) = m̄0(x), ũT (x) = G̃(x, m̃T ) in Rd

(18)

Theorem B.2. Assuming B.1 we get that pathwise uniqueness holds and therefore by Yamada-
Watanabe 4.2, every weak solution is a strong solution.
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